با نو تشریی بوالات را فنی رئیزان (نظام درید)	شماره اسولل وکوز دین
$\frac{\chi^{\mu} + \chi^{\nu} + \chi^{\nu}}{\chi(\chi+1)(\chi^{\nu})} = \frac{\chi(\chi^{\nu} + \gamma^{\nu} + \gamma^{\nu})}{\chi(\chi+1)(\chi-1)(\chi+1)} = \frac{\chi(\chi^{\nu} + \gamma^{\nu} + \gamma^{\nu})}{\chi(\chi+1)(\chi+1)} = \frac{\chi(\chi^{\nu} + \gamma^{\nu} + \gamma^{\nu})}{\chi(\chi+1)(\chi+1)}$	1-1
= n(xxi)(xxr) _ r = x _r	(1)
$\frac{\chi(\chi(x))(\chi(x))}{\chi(\chi(x))} = \frac{\chi(\chi(x))}{\chi(\chi(x))} = \frac{1}{\chi(\chi(x))}$	
$\frac{1}{4} \times 1 \cdot \times \times = \frac{1}{4} \times 1 \cdot \times \times = \frac{1}{4} \times 1 \cdot \times \times$	1-ť
$\Rightarrow \Delta x = \frac{1}{r} x^{r} - \Lambda \xrightarrow{X^{r}} 1 \Delta x = r x^{r} - \Lambda$ $\Rightarrow r x^{r} - 1 \Delta x - \Lambda = .$	(٣)
$\Delta = YYA - F_{XYX}(-1) = YYA + YF = YA$ $1A + \sqrt{YA} \qquad \left(\frac{1A + (V - 1)}{1A + (V - 1)}\right) = A \qquad (3.6)$	
$x_{1,r} = \frac{1 \Delta \pm \sqrt{\mu q}}{r} = \begin{cases} \frac{1 \Delta + lv}{r} = 1 & \overline{GG} \\ \frac{1 \Delta - lv}{r} = -\frac{1}{r} & \overline{GGE} \end{cases}$	
$\Rightarrow \text{Culi} S = \frac{1}{V} \times \Lambda \times I_{-} = K_{-}$ $Y \times -1 \times -Y Y Y = Y - Y \times Y - 2Y + Y + Y \times Y + Y + Y + Y + Y + Y + Y + $	
$\frac{\Gamma x - 1}{x + r} = \frac{x - r}{x - r} = \frac{\Gamma x^{r} - rx - x + r - x^{r} - rx + rx + y}{x^{r} - r} = \frac{r}{r}$ $\Rightarrow \frac{x^{r} - rx + \lambda}{x^{r} - r} = \frac{\Gamma}{r} \Rightarrow r^{r} - rx + rr = rx^{r} - \lambda$	1.4°
$\Rightarrow x' - i'x + y' = \cdot \frac{c_1b_1 - c_2 \cdot c_3b_4}{an_1^2 + bn_1 + c_2 \cdot ib_4} S = -\frac{b}{a} = \frac{ y }{1} = y $	

D== D+ np = {1, r, a} f+g= } (1,v), (4,4), (2,9)} f-g= { (1, m), (m, r), (d, -m) } $\frac{P_{+g}}{f_{-g}} = \left\{ \frac{\vee}{r}, \frac{9}{r}, \frac{9}{-r} \right\} = \left\{ \frac{\vee}{r}, r_{g} - r \right\}$ $g(x) = \frac{|x|}{x} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$ 1.0 (1) 2>0 x1-1x-1=1=>x1-1x-1=0 $\Rightarrow (x-r)(x+1)=\cdot\Rightarrow \begin{cases} x=r & \bar{\sigma}\bar{\sigma} \\ x=-1 & \bar{\sigma}\bar{\sigma}\bar{\epsilon} \end{cases}$ 2<- > x - 1x - 1 = x - 1x - 1 = . $\Delta = K + K = \Lambda \Rightarrow x_{1,r} = \frac{Y \pm \sqrt{\Lambda}}{Y} = \frac{Y \pm \sqrt{V}}{Y} = \begin{cases} 1 + \sqrt{V} & \text{dis} \\ 1 - \sqrt{V} & \text{dis} \end{cases}$ f(- 1/2)+f(1/2)=[Yx-1/2]-1+[YX-1/2]-1 104 = - 1 - 1 + 1 - 1 = - 1(4) fm=[rn-1] = [rn]-1

$$(a^{\dagger} + \kappa b)^{\prime \prime} = a^{\prime} + l^{\prime \prime}(a^{\prime})^{\prime} (\kappa b) + l^{\prime \prime}(a^{\prime}) (\kappa b)^{\prime} + l^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + k n a^{\prime} b^{\prime} + l^{\prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime \prime} b^{\prime \prime}$$

$$= a^{\prime} + (l^{\prime}) a^{\prime \prime} b + l^{\prime} a^{\prime$$

شاعمی بهای کالای واحدانان مایری بیتی نارز	1.9
عون این سازی سازی بن ۱۰ و ۱۰	The Charles of the Ch
$\frac{r_0 + r_9}{r} = r r$	
$B_{\alpha} = \frac{1}{100} \times 10^{-3} = 100^{-3}$	(T)
عدار کی (تجوع درصر معنوها) ۱۰۰۰ - ۱۰ - ۲۰ + ۲۰ + ۲۰ - ۱۰ - ۱۰ تغار	
$((T \Leftrightarrow T) \land T) \Rightarrow T$	117 (t)
$= (T \land T) \Rightarrow F = T \Rightarrow F = F$	
$A - (BUC) = A \cap (BUC)' = A \cap (B' \cap C')$	117
(A - C) \ (A - B)	
$(A-c) \cup (A-B) = A \qquad : (A) \cup $	
Welling X K X P X T X - VY	(4)

$$P(A) = \frac{(A)}{(A)} \times (F)$$

$$= \frac{A!}{(A+F)} \times F! \times (F!)$$

$$= \frac{A!}{(A+F)} \times F!$$

$$= \frac{A!}{$$

$$S_{q} = 9 \Rightarrow \frac{4}{r} \times [r \times q + \wedge d] = 9.$$

$$\Rightarrow 4 q_{1} + r + 4 d = 9.$$

$$Q_{1} = 1r \Rightarrow q_{1} + r + r d = 1.$$

$$Q_{2} = 1r \Rightarrow q_{1} + r + r d = 1r$$

$$S_{1} = -r + r d = -1.$$

$$Q_{1} + r + r d = -1.$$

$$S_{n} = \frac{a_{1}(1-r^{n})}{1-r} \Rightarrow S_{n} = \frac{9r\left(1-\frac{1}{r}\right)}{1-\frac{1}{r}}$$

$$= \frac{9r\left(1-\frac{1}{ray}\right)}{\frac{1}{r}} = 1r_{1}\left(1-\frac{1}{ray}\right) = 1r_{1} - \frac{1r_{1}}{ray}$$

$$= 1r_{1} - \frac{1}{r} = 1r_{1}a$$

$$= \frac{\gamma r_{0} \left(1 - \frac{1}{r_{0} \dot{\gamma}}\right)}{\frac{1}{r}} = 1 r_{0} \left(1 - \frac{1}{r_{0} \dot{\gamma}}\right) = 1 r_{0} - \frac{i r_{0}}{r_{0} \dot{\gamma}}$$

$$= 1 r_{0} - \frac{1}{r} = 1 r_{0} \dot{\gamma}$$

$$= 1 r_{0} - \frac{1}{r} = 1 r_{0} \dot{\gamma}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = 1 r_{0} \dot{\gamma}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = 1 r_{0} \dot{\gamma}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}}$$

$$= 1 r_{0} - \frac{1}{r_{0} \dot{\gamma}} = \frac{1}{r_{0} \dot{\gamma}$$

استح تستريعي سؤلات غير سُرك دغر ميرنظام تديم	*
	1119 -1-1
	14, -1.7
	(4)-1.4
	15) - 1.6
	(1) -1-3
log(x'+19)=1 => n'+19=1- => n'=119	(1) -1-9
$\Rightarrow x' = \Lambda_1 \Rightarrow \begin{cases} x = 9 \\ x = -9 \end{cases}$	
$\frac{n=9}{r}$, $\log (9-1) = \log_{p} r^{p} = \frac{r^{p}}{r} \log_{p} r^{p} = \frac{r^{p}}{r}$	
	1×1-1.V
	14) - 1.4
$-(tx^{\mu}+x^{\nu}-x)$	(1) - 1.9
$- rx^{r} - x$ $- (- rx^{r} - rx)$	
<u>-(1 x + 1")</u>	
$\int_{0}^{\infty} g(x) = \int_{0}^{\infty} g(x) dx$	(r)-11.
$\begin{cases} y = Yx - 1, & (x) \\ y = Yx + 0 = 0 \end{cases} \rightarrow Y(y)$	1)+x+ a=.
⇒ ドカード· + ス+の=· ⇒ X= ド	
*) / = Y x 1 - 1 = - 1	
$OA = \sqrt{YY} + (-Y)^T = \sqrt{YO} = 0$	
0 4 = 1 1 + (-1) = 1 10 = 0	

$$bell-pidolop = \frac{c}{a} = \frac{k}{k+r} = -\frac{1}{r}$$

$$\lim_{n\to\infty} \frac{(\sqrt{r})^{rn}}{r^n} = \lim_{n\to\infty} \frac{r^n}{r^n} = 1$$